|
EN |
Поиск по сайту
Авторизация
Подписка на новости
|
Клод Элвуд ШеннонКлод Элвуд Шеннон, англ. Claude Elwood Shannon, ( 30 апреля 1916 – 24 февраля 2001) – американский инженер и математик, его работы являются синтезом математических идей с конкретным анализом чрезвычайно сложных проблем их технической реализации. Является основателем теории информации, нашедшей применение в современных высокотехнологических системах связи. Шеннон внес огромный вклад в теорию вероятностных схем, теорию автоматов и теорию систем управления – области наук, входящие в понятие «кибернетика». Работа Шеннона «Теория связи в секретных системах» (1945) с грифом «секретно», которую рассекретили и опубликовали только лишь в 1949 году, послужила началом обширных исследований в теории кодирования и передачи информации, и, по всеобщему мнению, придала криптографии статус науки. Именно Клод Шеннон впервые начал изучать криптографию, применяя научный подход. В этой статье Шеннон определил основополагающие понятия теории криптографии, без которых криптография уже немыслима. Важной заслугой Шеннона является исследования абсолютно стойких систем и доказательство их существования, а также существование криптостойких шифров, и требуемые для этого условия. Шеннон также сформулировал основные требования, предъявляемые к надежным шифрам. Он ввёл ставшие уже привычными понятия рассеивания и перемешивания, а также методы создания криптостойких систем шифрования на основе простых операций. Данная статья является отправным пунктом изучения науки криптографии. В 1948 году Шеннон публикует свою статью «Математическая теория связи». Данная статья сделала Клода Шеннона всемирно известным. В ней Шеннон изложил свои идеи, ставшие впоследствии основой современных теорий и техник обработки, передачи и хранения информации. Результаты его работ в области передачи информации по каналам связи запустили огромное число исследований по всему миру. Шеннон обобщил идеи Хартли и ввёл понятие информации, содержащейся в передаваемых сообщениях. В качестве меры информации передаваемого сообщения М, Хартли предложил использовать логарифмическую функцию I = log (M). Шеннон первым начал рассматривать передаваемые сообщения и шумы в каналах связи с точки зрения статистики, рассматривая как конечные, так и непрерывные множества сообщений. Развитая Шенноном теория информации помогла решить главные проблемы, связанные с передачей сообщений, а именно: устранить избыточность передаваемых сообщений, произвести кодирование и передачу сообщений по каналам связи с шумами. Решение проблемы избыточности подлежащего передаче сообщения позволяет максимально эффективно использовать канал связи. К примеру, современные повсеместно используемые методы снижения избыточности в системах телевизионного вещания на сегодняшний день позволяют передавать до шести цифровых программ коммерческого телевидения, в полосе частот, которую занимает обычный сигнал аналогового телевидения. Решение проблемы передачи сообщения по каналам связи с шумами при заданном соотношении мощности полезного сигнала к мощности сигнала помехи в месте приема, позволяет передавать по каналу связи сообщения со сколь угодно малой вероятностью ошибочной передачи сообщения. Также, это отношение определяет пропускную способность канала. Это обеспечивается применением кодов, устойчивых к помехам, при этом скорость передачи сообщений по данному каналу должна быть ниже его пропускной способности. В своих работах Шеннон доказал принципиальную возможность решения обозначенных проблем, это явилось в конце 40-х годов настоящей сенсацией в научных кругах. Данная работа, как и работы, в которых исследовалась потенциальная помехоустойчивость, дали начало огромному числу исследований, продолжающихся и по сей день, уже более полувека. На сегодняшний день все системы цифровой связи проектируются на основе фундаментальных принципов и законов передачи информации, разработанных Шенноном. В соответствии с теорией информации, вначале из сообщения устраняется избыточность, затем информация кодируется при помощи кодов, устойчивых к помехам, и лишь потом сообщение передается по каналу потребителю. Именно благодаря теории информации была значительно сокращена избыточность телевизионных, речевых и факсимильных сообщений. Источник информации:
|
Читайте бесплатно
События из истории измерений
|