В современном мире электронная техника развивается семимильными шагами. Каждый день появляется что-то новое, и это не только небольшие улучшения уже существующих моделей, но и результаты применения инновационных технологий, позволяющих в разы улучшить характеристики.
Не отстает от электронной техники и приборостроительная отрасль – ведь чтобы разработать и выпустить на рынок новые устройства, их необходимо тщательно протестировать, как на этапе проектирования и разработки, так и на этапе производства. Появляются новая измерительная техника и новые методы измерения, а, следовательно – новые термины и понятия.
Для тех, кто часто сталкивается с непонятными сокращениями, аббревиатурами и терминами и хотел бы глубже понимать их значения, и предназначена эта рубрика.
ДИФРАКЦИЯ ВОЛН (от лат. cliff rectus — разломанный, преломлённый), в узком смысле — огибание волной препятствий, в более широком — любые нарушения первоначальной формы волнового фронта при распространении волны в среде с неоднородностями. Благодаря дифракции волны могут попадать в область геометрии, тени: огибать препятствия (напр., звук может быть услышан за углом дома), проникать через небольшие отверстия в экранах, создавая за экраном сложную картину волнового поля с чередующимися максимумами и минимумами излучения, и т. п.
Дифракц. явления практически не зависят от физ. природы дифрагирующих волн и в общем случае могут быть описаны линейным волновым уравнением с соответствующими граничными условиями. Однако в такой общей постановке удаётся решить лишь простейшие задачи. В большинстве случаев используют приближённые методы, из к-рых наибольшее распространение получил метод, осн. на применении принципа Гюйгенса—Френеля (первоначально сформулирован голл. учёным X. Гюйгенсом в 1678, уточнён и дополнен франц. физиком О. Ж. Френелем в 1815). Согласно этому принципу, каждый элемент волнового фронта является центром (фиктивным источником) вторичной сферич. волны. Волновое поле в произвольной точке пространства можно рассматривать как результат интерференции (см. Интерференция волн) вторичных волн, пришедших в точку наблюдения в данный момент времени.
Структура дифракц. поля существенно зависит от соотношения между длиной волны λ и линейными размерами D объекта, вызывающего Д. в. Наиболее отчётливо Д. в. начинает проявляться при D~λ.
Д. в. играет существ, роль во мн. физ. процессах. Так, дифракция радиоволн на сферич. поверхности Земли является одной из причин приёма радиосигналов за пределами прямой видимости; дифракция на отд. неровностях земного рельефа, на неоднородностях ионосферы и т. д. вызывает изменение энергии радиосигналов в точке приёма (дифракц. усиление или замирание). На дифракции света осн. действие спектральных приборов с дифракц. решётками (дифракц. спектрометров); дифракция света определяет предел разрешающей способности оптич. приборов (телескопов, микроскопов и др.); расходимость лазерного излучения также обусловлена дифракцией на выходном отверстии лазера. Дифракция рентгеновских лучей на крист. решётках даёт возможность исследовать характер крист. структуры. Явления дифракции имеют место и в микромире, поскольку объектам квантовой механики (эл-нам, нейтронам, атомам у т. д.) присущи и волновые св-ва. В ряде случаев дифракция эл-нов — вредное явление (напр., дифракц. аберрация в электронно-оптич. системах). На дифракции микрочастиц осн. такие методы анализа атомной структуры в-ва, как электронография, нейтронография.
Источник
Электроника. Энциклопедический словарь
Москва, «Советская энциклопедия», 1991 г.
Этот универсальный конвертер позволяет перевести различные величины (такие, как: длина, масса, температура, объем, площадь, скорость, время, давление и энергия) из одной системы единиц в другую. Он прост в использовании и работает на различных языках: русском, английском, испанском.
Выберите язык
Выберите величину
Введите значение
Получите результат
Мы используем файлы 'cookie', чтобы обеспечить максимальное удобство пользователям.